Conformal $n$-point functions in momentum space

Item request has been placed! ×
Item request cannot be made. ×
  Processing Request
  • معلومة اضافية
    • Publication Date:
      2019
    • Collection:
      Condensed Matter
      High Energy Physics - Phenomenology
      High Energy Physics - Theory
    • Abstract:
      We provide a Feynman integral representation for the general momentum-space scalar $n$-point function in any conformal field theory. This representation solves the conformal Ward identities and features an arbitrary function of $n(n-3)/2$ variables which play the role of momentum-space conformal cross-ratios. It involves $(n-1)(n-2)/2$ integrations over momenta, with the momenta running over the edges of an $(n-1)$-simplex. Specializing to $n=4$, we identify values of the operator and spacetime dimensions for which singularities arise leading to anomalies and beta functions. Several illustrative examples from perturbative quantum field theory and holography are discussed.
      Comment: 8 pp, 4 figs; results generalized to $n$-point functions
    • Accession Number:
      edsarx.1910.10162
  • Citations
    • ABNT:
      BZOWSKI, A.; MCFADDEN, P.; SKENDERIS, K. Conformal $n$-point functions in momentum space. [s. l.], 2019. Disponível em: http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428. Acesso em: 21 jan. 2020.
    • AMA:
      Bzowski A, McFadden P, Skenderis K. Conformal $n$-point functions in momentum space. 2019. http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428. Accessed January 21, 2020.
    • APA:
      Bzowski, A., McFadden, P., & Skenderis, K. (2019). Conformal $n$-point functions in momentum space. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428
    • Chicago/Turabian: Author-Date:
      Bzowski, Adam, Paul McFadden, and Kostas Skenderis. 2019. “Conformal $n$-Point Functions in Momentum Space.” http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428.
    • Harvard:
      Bzowski, A., McFadden, P. and Skenderis, K. (2019) ‘Conformal $n$-point functions in momentum space’. Available at: http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428 (Accessed: 21 January 2020).
    • Harvard: Australian:
      Bzowski, A, McFadden, P & Skenderis, K 2019, ‘Conformal $n$-point functions in momentum space’, viewed 21 January 2020, .
    • MLA:
      Bzowski, Adam, et al. Conformal $n$-Point Functions in Momentum Space. 2019. EBSCOhost, search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428.
    • Chicago/Turabian: Humanities:
      Bzowski, Adam, Paul McFadden, and Kostas Skenderis. “Conformal $n$-Point Functions in Momentum Space,” 2019. http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428.
    • Vancouver/ICMJE:
      Bzowski A, McFadden P, Skenderis K. Conformal $n$-point functions in momentum space. 2019 [cited 2020 Jan 21]; Available from: http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1910.10162&custid=s8280428